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ABSTRACT

This report discusses the results of a three year study on vortex enhancement of supersonic

mixing supported under gr_fNAG-1-872._ecent interest in compressible mixing has spurred

research in the field of high spee_ar layers. It has been established that shear layer growth

diminishes with increasing convective Mach number; this Mach number is the relative mach

number of the large scale structures in the shear layer with respect to the Mach numbers on either

side of the shear layer. Efforts to enhance shear layer growth rates at high convective Mach number

have proven unsuccessful. This research project was started to evaluate the effect of swirl on

compressible mixing rates. Previous analytical and experimental results seem to indicate that

swirling flow may significantly modify the shear layer, in some cases resulting in enhanced mixing.

Previous studies of the effect of swirl on compressible mixing were incomplete since the amount

of swirl in the flowfield was not quantified. This study was undertaken to conclusively determine

the effect of swirl on supersonic mixing, including the quantification of the swirl. Preliminary results

indicate that the swirl modestly enhances the mixing rates.





NOMENCLATURE

Variables: Subscripts:

a - acoustic speed, constants
A - area

D - diameter

f- frequency
L- distance downstream

M - Mach number

n - azimuthal wave number

R - velocity ratio

Re - Reynolds number

S - density Ratio
St - Stokes or Strouhal number

T- temperature

u - velocity
t_ - axial wave number

7 - ratio of specific heats

p - density

la - kinematic viscosity

v - dynamic viscosity

8 - shear layer thickness
0 - vane angle, non-dimensional temperature

•_ - characteristic period

a - ambient

c - convective

crit - critical

f- fluid

i - injector, intensity level, inner

inc - incompressible

j-jet

o - stagnation, outer

p - particle

r - recovery
t - tunnel

v - vortex

x,y,z - cartesian coordinates
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1 INTRODUCTION

In recent years a great deal of effort has been spent on trying to understand the fundamental

physics of high speed shear layers. Lately, this topic has become a priority area of study due to the

NASP (National Aerospace Plane) project. This interest in high speed shear layers was due to the

necessity of mixing fuel and air in a SCRAMJET engine of such a vehicle. Since the velocities in

the combustion chamber of a SCRAMJET are supersonic, rapid mixing of the fuel and air is

necessary. However, it was known at the outset that the mixing rates for two streams, with a given

velocity and density ratio, decreased with increasing Mach number. Therefore, several studies

were undertaken to attempt to understand and increase the rates of combustion in supersonic

flows. Northam and Anderson' (1986) discuss such research ongoing at NASA-LaRC. These

studies include both experimentaF and computationaP efforts. However, fundamental research

on non-reacting mixing layers is needed to complement the combustion research. This research

is necessary so that the controlling mechanisms of the high speed shear layer and shear layer mixing

may be studied without the complicating presence of combustion.

More recently, the High Speed Civil Transport (HSCT) program has identified several

critical technology needs, many of which are related to high-speed shear layers. These needs are

summarized by Seiner and Kresja 4. One area was the issue of jet engine noise associated with

takeoff and landing. A method of lowering takeoff noise is through the use of ejector nozzles which

also have the beneficial effect of increased thrust. An important parameter associated with ejector

nozzles is the so-called augmentation, a measure of the entrainment of the secondary stream by

the primary stream (see Figure 1). The entrainment of the secondary stream is important in that

Figure 1 - Schematic of Ejector Nozzle

it dictates the amount of mass entrained as well as the induced velocity given to the secondary

stream by the primary stream. A controlling factor of this augmentation ratio is how fast the

primary and secondary streams can be mixed. Thus, the HSCT project also provides a practical

application for compressible mixing enhancement techniques.
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The study of compressibleturbulent vortices is valuable since it may contribute to the

understanding of complex turbulent flows. Studying the mixing properties of vortical flows in order

to more fully the appreciate the underlying physics of compressible turbulent shear layers is of value

in itself; any direct application of the results, such as those listed above, is fortunate.

This study focuses on the use of swirl to enhance the compressible mixing process. The use

of swirl to increase mixing has been suggested by many researchers. Swithenbank and Chigier s

(1969) proposed to enhance supersonic mixing with swirl based on observations in subsonic and

transonic flows. Instability analysis by several researchers including Lessen et al6(1974) has

suggested that swirl may destabilize otherwise stable flowfields. Recently, Kumar et al7 (1987)

reviewed techniques for enhancing mixing. Among these techniques were: provision of increased

mixing area, control of vorticity production, imposition of swirl or longitudinal vortex motion,

design of combustor ensuring turbulence augmentation, and shock interactions. The current study

addresses all these issues through the study of the mixing process of a supersonic vortex. This study

encompasses several fundamental fields of study including compressible shear layers, swirling

flowfields, and vortex breakdown. Both experimental and analytical research in each of these fields

is discussed in the literature review.

This thesis proposal is organized in the following manner. The existing literature is

reviewed and the problem statement described in the first section. The second section discusses

the test facilities and hardware. Instrumentation and experimental methods are described in detail

in that section. The third section describes the reduction processes for the data taken, and fourth

section presents the results to date. The final section presents the conclusions to date and the steps

required to complete this project.

2 LITERATURE SURVEY AND PROBLEM STATEMENT

As stated above, supersonic m/xing enhancement by means of streamwise vorticity has

several related fields of interest. Some background in these fields is necessary to completely

understand the present problem and experimental approach.

2.1 Compressible Turbulent Shear Layers

2.1.1 Planar Shear Layers

The importance of compressibility in shear layers has been known for a long time. The

reduction of mixing rates in compressible shear layers was observed early on, but only recently have

the reasons for this reduction been explored. Dimotakis 8 (1989) has summarized much of the
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Figure 2 -The planar shear layer (a) in the laborator T frame of reference and

(b) in the convective frame of reference

current understanding of shear layers. One theory attributes the reduction in mixing of the

compressible shear layer to the density ratio between the two streams. In subsonic flows the mixing

rate of two streams was already known to be a function of the velocity ratio of the two streams.

However, the role of the density ratio was not well understood before Brown and Roshko 9studied

the effect of density ratio on incompressible turbulent mixing rates. In their landmark study, they

found that the mixing rate was a function of the density ratio of the two streams. However, the 30

% reduction in vorticity thickness for a density ratio of 7 in subsonic shear layers does not account

for the drastic reduction of 300% seen in a compressible shear layer of the same density ratio.

Therefore, they attributed the major portion of this effect to compressibility alone. In addition,

their flowvisualization experiments revealed large scale structure that dominated the mixing layer.

Following the work of Bogdanoff_°(1983), Papamoschou and Roshko'i(1988) transformed

the coordinate frame from a laboratory frame of reference, Figure 2a, to a frame of reference

convecting with the large scale structures, Figure 2b. They reasoned that the saddle point in the

convective frame of reference requires that the total pressure of the two streams be equal. They

called the Mach number in this frame of reference the convective Mach number (Me). The

normalized spreading rates (_'/_5',,) collapse to a common curve when plotted versus M as shown

in Figure 3. The normalized spreading rate drops quickly with increasing Mo, but asymptotes to

1.0 _. .

0.8

0.6

0.4

0.2

oO

O

O
0 0 0

0

0:5 ,_0 ,15 2.0

Me,

Figure 3 - Normalized shear layer growth rate versus convective Mach Number

(from Papamoschou and Roshkol'(1988))
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about0.2ataconvectiveMachnumbersomewhatlessthanunity. They pointedout that noshocks

or expansionsare believed to exist in the convectiveframe of reference for Mc < 1; thus, the

decreasein mixing must be due to someother phenomena. They postulated that energywas

radiated awayfrom the shearlayer rather thanbeingusedfor growth. The asymptoticnature of

the curve in Figure 2 wasattributed to a diminishing but ever present subsonicsub-layer in the
convectiveframe of reference. An additional commentwasmade that oblique structureswould

have an "effective" convectiveMach number that dependedon the angle of the structurewith

respectto the freestreamdirection. If turbulent structuresbecameoblique asMoincreased,the

effectively-reducedconvectiveMachnumberand growthrate associatedwith it could accountfor
the asymptoticnature of the mixing curveat high Mc.

Since these original studies,a significant amount of additional research hasgone into

understandingcompressibleshearlayers. Papamoschou12observedthat structures on opposite

sides of the shear layer moved at different speeds,and these speedsdid not agree with the

convectiveMachnumberpredictedbyFigure 3. Turbulencelevels in the compressibleshearlayer
havealsobeenstudied13'14'_5'16.A significant reduction in turbulencewith increasingMcwasfound

byall researchers,while Goebel & Dutton_4(1990)found that the turbulence anisotropyincreased

with Mo. Elliot et ap5(1990) performed one- and two-point correlations with pressure probes.

Although the intrusiveness of the probes makes the results somewhat suspect, they showed the

frequency content of the shear layer to be between 4 and 15 kHz. In addition, they found that the

streamwise space-time correlations calculation of M agreed well with Figure 3. However,

spanwise correlations were very low, suggesting a highly three-dimensional shear layer.

This highly 3-D structure of 2-D compressible shear layers has been confirmed visually by

Clemens et a/t7'_8(1990). For one value ofM (0.6) they saw large-scale structures when performing

streamwise cuts of the shear layer with a laser sheet. However, when they cut spanwise these

structures did not persist across the shear layer. Further study at various values of M c revealed a

transition from 2-D to 3-D structure with increasing convective Mach number.

One reason for carrying out fundamental studies of the shear layer was to increase the

understanding of the underlying physics so that intelligent methods of enhancing supersonic mixing

could be attempted. Papamoschou 19added obliquity to the flow in an attempt to reduces the

effective M. The several methods used to create this obliquity proved to be ineffective. Dolling

et aF ° (1990) attempted to add streamwise vorticity to the shear layer by installing vortex generators

on the trailing edge of the splitter plate. These vortex generators showed only a modest increase

of 30% in growth rate over the case without the generators. Dolling et af 21studied the effect of a

shock wave on the growth rate of the shear layer. They passed a shock wave across the boundary

layer upstream of the splitter plate lip and across the shear layer downstream. In both cases they
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noticed no increase in mixing rate except locally. Clemens and Munga122(1990)introduced

streamwisevorticity to a2-D shearlayer by meansof perturbing the boundary layer leaving the

splitter plate. Both adeltawing andanoblique shockwereusedto generatelongitudinal vorticity.
Although no quantitative measurementswere made, laser sheet imagesshowedan increaseof

boundary areabetween the two streams.

2.1.2 Axisymmetric Shear Layers

Basic Studies on axisymmetric shear layers have also been performedY These investiga-

tions reached conclusions similar to their two-dimensional counterparts. Although the flows are

fundamentally different, there appear to be many similarities at least in the developing regions.

The planar spreading-rate trend with M c appears to hold for axisymmetricjets also. Fourgette and

Dibble24(1990) found deviations of structure velocities from theoretically-predicted rates as did

Mclntyre and Settles25(1991). Mclntyre and Settles also found a frequency spectrum similar to that

of 2-D results, with most of the energy in the lower frequencies, although the spectrum appears

more broadband. They also observed that energy moved to the lower frequencies the farther

downstream the measurements were made. In addition, two-point measurements revealed no

constant spacing of the structures. However, the existence of large scale structures in the flowfield

appeared to be supported by the concentration measurements of Fourgette et a/26 (1991). The large

departure from the average concentration at a given point in the shear layer seemed to suggest

some large scale structure. Instantaneous laser sheet pictures in the present study also seem to

support the existence of large scale structure. Figure 4 shows several cross-sectional views of the

same jet at different points in time. The images show large differences in appearance suggesting

that large convecting structures were present.

Two unique enhancement studies on axisymmetric shear layers were performed by

Lepicovsky et aP7(1987) and Samimy et aPs(1991). Lepicovsky observed the shear layer of fully-

expanded supersonic jets under acoustic excitation of 120 dB. In varying the frequency, they

observed large coherent structures in the shear layer at certain excitation frequencies. The most

amplified structures were observed at a Strouhal number, St = (f*DJUj), of 0.4. Such regularly-

spaced large-scale structures have not been found in unexcited compressible flows. Samimy et al

placed tabs at the exit of the nozzle to induce streamwise vorticity. With the proper configuration,

the jet bifurcated increasing the surface area of the jet significantly. This unique process in jets is

not possible in a two-dimensional shear layer.
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Figure 4 Instantaneouslight sheet images of Mach 2.95 helium jet.
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2.1.3 Instability Analysis of Compressible Shear Layers

Analysis of compressible turbulent shear layers is difficult at best and impossible in many

cases. One form of analysis that sheds light on the physics occurring within compressible shear

layers is instability analysis. Such studies have been able to predict with some accuracy certain

features of the flow. With this in mind, other interesting results of the studies lend experimentalists

a guide for planning their experiments.

Tam and Hu_(1988) found three families of instability waves in an axisymmetric jet in

agreement with previous experimental work. These wave families were called the Kelvin-

Helmholtz (K-H), subsonic, and supersonic instabilities. Kelvin-Helmholtz instabilities are the

instabilities that cause 2-D structures in low speed flows. Tam and Hu found that K-H instabilities

have their maximum growth rate at low speeds. Subsonic waves were found to exist only within

the jet and decayed rapidly outside the jet; thus, their effect on growth rates was insignificant.

Supersonic instabilities were only found when the jet velocity was greater than the sum of the

acoustic velocities of the jet and the surrounding environment, uj > (a + a). For each azimuthal

wave number there is a family of instability waves with different radial wave numbers. The growth

rate of these waves increases with increasing Mach number and becomes dominant at some Mach

number Mo,_,. The Strouhal number of the most unstable modes was found to be in the range of

0.25 to 0.55, comparing favorably with the results of Lepicovsky et. al. 27(1987).

An analytical study to determine growth rates for different modes was performed by Morris

et aP°(1990). In this study they showed that the axisymmetric and helical growth rates were different

with the helical mode dominating in certain cases. In concurrence with experimental findings, they

showed that the growth rates for both axisymmetric and 2-D shear layers reduces with Mo. In

addition, for the specific conditions of the 2-D shear layer modeled, they found that the most

unstable wave propogated with an angle of 55 degrees.

These models have accurately predicted some features of compressible shear layers such

as the decrease in growth rates with Mo. With this in mind, the results suggest exciting the helical

modes that are predicted to have the greatest growth rate at supersonic Mach numbers. If these

unstable modes were excited, the shear layer growth could be enhanced significantly.
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2.2 VORTEX ENHANCEMENT OF MIXING

2.2.1 Low Speed Results

2.2.1.1 Experimental Studies

Vortical flowfields have long been utilized in subsonic combustion. An overview of the use

of vortices in practical applications is given by Escudier31(1987). Many researchers, including

Chigier and Chervinsky32(1967), Delery et aP 3 (1984), have studied swirling flowfields in detail for

the purpose of explaining observed phenomena. The results of these studies and efforts to explain

the process of vortex breakdown, discussed later in this section, have resulted in the following

conclusions. First, swirling motions create pressure gradients within the flowfield that in case of

mild to stong swirl cause an axial velocity deficit on the axis. In addition, jet width and rate of

entrainment increase with swirl. Finally, if the swirl is increased sufficiently or asignificant pressure

gradient is encountered, the vortex will burst. Due to these factors, and results from transonic flows,

Swithenbank and Chigie: suggested that similar phenomena may occur in supersonic vortical

flows.

2.2.1.2 Instability Analysis

In addition to experimental work, instability analyses of several flowfields with swirl suggest

that the addition of an azimuthal component may be destabilizing. Lessen et ap4(1974) studied the

addition of swirl to a wake flow. (Note that this flow is not dissimilar to the experimental flows

discussed above in that the experimental flows often show a wake-like core in the flowfields

studied.) Their inviscid study of the swirling flow showed that all positive azimuthal modes were

stabilized by adding swirl. On the opposite side, the negative azimuthal modes were destabilized

for small amounts of swirl and stabilized for large amounts of swirl. In addition, for a given amount

of swirl, the higher the negative azimuthal mode was, the greater the instability (up to n = 6).

Later studies by Lessen and Paillet35(1974) and Leibovitch and Stewartson36(1983) ex-

tended this work. The former study added viscosity to their model and confirmed the inviscid

studies results. In addition they determined a critical Reynold number for each azimuthal mode

and found these were quite low. This suggests that, at normal Reynold numbers, the transition from

a stable to an unstable condition would be a "sharp function" of the degree of swirl. They also

determined that the swirl at which the azimuthal modes would become stable again was greater

the higher the mode. Leibovitch and Stewartson repeated the inviscid study of Lessen et o./34and

concurred with its results. In addition, they performed an asymptotic analysis to determine if the

10



maximum amplification rate was finite for large azimuthal wave numbers. The results of this

analysis determined that a finite value of the growth rate existed as n approached infinity.

One experimental analysis that measured instabilities in a swirling flow was that of Singh

and UberopT(1976). They probed a laminar trailing vortex with X-wire-configured hot-wires and

found two unstable modes n = 0 and n = +/- 1. From their measurements they could not distinguish

between positive and negative azimuthal modes. However, the helical mode was the more unstable

of the two.

Obviously the theory and experiment discussed above do not apply directly to increasing

mixing in compressible flows. However, they clearly show that a flow that is initially stable may

be made unstable with the addition of swirl.

2.2.2 Supersonic Results

2.2.2.1 Experimental Results

Due to the preliminary evidence suggesting that compressible shear layers would mix faster

in the presence of swirl, several studies were initiated. Povineili and Ehlers38(1972) investigated

sonic parallel injection, with and without swirl, into a M = 2.7 air flow. Total temperature and

concentration profiles were measured. These measurements indicated that there was little

difference in the two flows. In a similar study, Schetz and Swanson_9(1973) studied coaxial injection

into a M =3.5 freestream. Cases with and without swirl were investigated with total temperature

and total pressure surveys. As in the previous study, little difference was seen in flowfield structure.

From the results of these studies, the researchers concluded that the addition of swirl did not

enhance mixing. However, reexamining the total temperature results of both studies suggests that

little swirl was actually present in the flowfield. In any case, the swirl was not quantified in either

study, so the conclusion that swirl did not enhance mixing was somewhat premature.

Evidence that streamwise vorticity plays a large role in compressible mixing is shown by

several studies. Swithenbank et aP°(1989) injected fuel in the vicinity of a delta wing vortex

generator. They found a 30% increase in mixing efficiency over the baseline configuration.

Tillman et a/4_'42(1988,1989) investigated the flowfield near the exit of a mixer nozzle and found

faster decay of centerline temperature and increaseddistribution of shear forces. These results

were attributed to the inviscid stirring mechanism provided by large streamwise vortices in the flow.

Driscolt43(1986) showed comparable results while investigating supersonic mixer nozzles for

chemical lasers. He found a similar increase of area where the injectant and ambient were in
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contact. He termed this process "reactant surface stretching." Although these studies show that

streamwise vorticity plays a role in supersonic mixing, none of them directly studied the mixing

enhancement associated with swirling the entire injectant flow.

As a result of the inconclusiveness of preliminary studies of swirl enhancement of mixing,

coupled with the promising results of enhanced mixing due to local streamwise vorticity, this study

was initiated. A summary of the earliest results of this study _ is included in the appendix. Briefly

restated here, the addition of swirl to a Mach 3.0 air jet exiting into a Mach 3.5 freestream was

studied. The flowfield was analyzed both with probe surveys and laser light scattering visualization.

For this low Mo flow, the addition of vorticity was seen to increase mass entrainment by 30%.

2.2.2.2 Analytical Results

Recently, Khorrami4S(1991) performed a temporal instability analysis of a compressible

swirling jet. Although this study only considered cases with low degrees of swirl at relatively low

Reynold number, it is the only study of its type. As in the incompressible analysis the growth rates

of negative azimuthal modes were shown to increase significantly. Note that only azimuthal modes

with n = +/-1 are unstable for jets without swirl. This analysis also showed that the growth-rate-

damping effect of increasing Mo was still present, but less than in the case without swirl. This model

leaves unanswered several questions:

Is there a swirl rate above which the flow stabilizes?

What is the swirl at which the growth rates are a maximum ?

Do azimuthal modes n <-2 asymptote to some to some finite growth rate as Re

approaches infinity?

Although the studied flowfield is low Reynolds number and low swirl, the results seem to

suggest that the swirling the compressible jet may delay or reduce the damping effect of

compressibility on mixing.

Figure 5 - Spiral and Bubble forms of vortex breakdown. Taken from Sarpakaya _°.
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2.2.3 Vortex Breakdown

2.2.3.1 Low Speed Results

The last related area of study is vortex breakdown. The phenomenon of vortex breakdown

in incompressible flows has been studied in detail. Pictures of vortex breakdown are shown in

Figure 5. This subject will be treated briefly here; further details may be found in excellent review

articles by Ha1146(1972) and Leibovitch47(1978).

Vortex breakdown occurs in flows with significant axial and tangential velocities. It only

occurs in the presence of an adverse pressure along the axis of the vortex. This pressure gradient

need not be in the exterior flow, as it can be self generated. If breakdown occurs, an increase in

either the swirl or pressure gradient moves the location of breakdown upstream. Thus it is the

combination of swirl and pressure gradient that determines if and where breakdown occurs.

There are three regions within the vortex breakdown flowfield: the approach flow region,

the breakdown region and the wake region. The approach flow region is characterized by relatively

small gradients and small fluctuations. The breakdown region contains a stagnation point on the

axis with a region of reversed flow behind it. This region is characterized by large axial gradients.

The wake region aft of the breakdown region contains a reorganized vortex with a wake-like axial

velocity profile. There are also high turbulence levels within this region.

The exact cause of vortex breakdown is not well understood although it has been studied

for many years. There are many theories that have attempted to predict when vortex breakdown

occurs. The instability analyses discussed above have been used to explain breakdown. Another

theory postulates that there is a critical state in vortex flows. 4_Vortex breakdown separates a region

of supercritical flow, the approach flow, from a region of subcritical flow, the wake region. Hall 46

postulates that the upstream flow approaches the critical state, and when it is reached, vortex

breakdown occurs. A third theory dictates that breakdown occurs when axial gradients become

large. 46 A quasi-cylindrical flowfield is assumed for the approach flow with axial gradients which

are small compared to radial gradients. When this quasi-cylindrical assumption fails due to large

axial gradients, breakdown is assumed to occur. This theory lends itself to numerical solution in

a manner similar to that of the prediction of boundary layer separation. A final theory postulates

the build-up of waves near a critical point: 9 Re success of these theories in predicting and

understanding vortex breakdown is summed up by Fahler and LeibovitchS°(1977): "The embar-

rassing number Of different the6retical notions gas not, it must be admitted, led to a satisfactory

understanding of the flows observed."

13



Figure 6 - Supersonic vortex breakdown in an underexpanded swirling jet.
From Cattafesta and Settles st.

Although the theory of vortex breakdown is not well developed, the characteristics of

breakdown in subsonic flow are well established. If these same characteristics were present in

supersonic vortex breakdown, they could be utilized to enhance compressible mixing.

2.2.3.2 High Speed Results

Vortex breakdown in supersonic flowfields has only recently been studied. Delery et

aP3(1984) studied the interaction of a trailing vortex produced by a delta wing with a normal shock.

Maximum tangential velocities up to 40% of the axial velocity were produced. They determined

the limit of vortex breakdown over a range of Mach number as a function of swirl and normal shock

strength (dictated by the Mach number). For one breakdown case, LDV surveys indicated a region

of reversed flow. In this case the swirling motion decreased and dilated radially much like that of

a dissipating vortex. The radius of the core doubled and turbulence intensities downstream

significantly increased. Constant mass flow lines exhibit structure similar to the structure

incompressible vortex breakdown.

MetwallySl(1990) and Metwally et al 52(1989) studied the addition of swirl to a highly

overexpanded jet. A "bubble-shock" was observed where, in the no-swirl case, a simple Mach disc

would have been located. This bubble-shock was highly unsteady and recompression shocks were

noted downstream, suggesting a region of reversed flow. Cattafesta and Settles53(1991) extended

14
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this work comparing the overexpanded vortex case, Figure 6, with a streamwise vortex passing

through a normal shock prod uced by a stalled inlet. Cutler and Levey_(1991) used the mechanism

of an overexpanded jet to study shock/vortex interaction in a free-jet facility. They noted that the

mixing layer downstream of the shock/vortex interaction grew much faster than the case without

swirl.

2.3 Summary

This literature survey has shown that there is promise in using swirl for enhancing

compressible mixing. There is no single result which suggests that this enhancement technique may

work. Rather, it is the sum of several results and suggestions across a broad range of research fields

that leads one to conclude that vorticity may enhance mixing in the compressible range. Thus, this

study is aimed at conclusively determining the role of swirl in compressible mixing.

2.4 PROBLEM STATEMENT

This study was undertaken to verify whether or not swirl enhances mixing over a large range

of compressibility and swirl. In order to conclusively determine the effect of swirl, it has to be

quantified for each case studied. The compressible mixing enhancement dependence on swirl,

compressibility, and density ratio could then be determined from the results. With this information

it was felt that future research would have the basic information needed to design experiments

aimed at determining the mechanism behind swirl induced mixing enhancement.
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3 TEST FACILITY AND HARDWARE

3.1 EXPERIMENTAL FACILITIES

3.1.1 Penn State Gas Dynamics Lab - Supersonic Wind Tunnel

The primary facility used for this study was the Penn State Supersonic Wind Tunnel pictured

in Figure 7. This tunnel is an intermittent blow-down type with a Mach number range of 1.5 to 4.0.

The Mach number is continuously variable by means of an asymmetric sliding block nozzle. The

pressure reservoir has a volume of 57 cubic meters (2000 cu. ft.) and may be pressurized to 2 MPa

(300 psi). The run time of the facility depends on the Mach number and total pressure and varies

from 30 seconds to over 1 minute. The test section dimensions are 15.25 x 16.50 x 61.95 cm (6 x

6.5 x 24 in.) with visual access through both sidewalls and ceiling.

' " V

Figure 7 - Penn State Supersonic Wind Tunnel.

Calibrations of the flowfield have shown excellent flow quality. The maximum deviation

in Mach number across the test section has been shown to be 2%. The Reynolds number of the

facility ranges from a low of 6.5 x 107 at Mach 4.0 to a high of 1.0 x 108 at Mach 1.5.

A separate high pressure air line

was constructed for this study. A sche-

matic of the system is shown in Figure

8. This system uses as its supply either

the wind tunnel pressure reservoir, an

auxiliary tank, or high pressure gas

cylinders. A 4 kW in-line immersion

heater, upgradable to 18kW, is used to

control the total temperature of the

injected stream.

4 kW

Immersion

Heater

ITo
Injector

©l
.6 eu. meter. 2 MPa Auxillirery Tank (AIR)

!@

_ _
5 Cylindera j

.044 eu reelers each

(Any Bottled Gas)

57 eu, meter. 2 IdPa Pregsure Reservoir (AIR)

t

I0/
Figure 8 - High pressure gas injection system
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3.1.2 Penn State Gas Dynamics Lab - Optics Lab

The Optics Lab houses equipment used for optical diagnostics. It also contains a research

area where new techniques may be proven before being attempted in the wind tunnel environment.

In addition, a portion of the lab contains the free-jet test stand used for calibrations and testing.

This free jet uses the same high pressure air supply as the supersonic wind tunnel.

3.1.3 Vortex Injector

A vortex injector was designed and built specifically for this research. A picture of the

finished injector is shown in Figure 9 and a drawing of the injector installed in the tunnel is displayed

in Figure 10. The coordinate system used in this study is shown in Figure 11. The injector consists

of an 1.78 cm (0.70 in.) ogive-cylinder forebody mounted on an 8% thick bi-convex airfoil. High

pressure air is supplied to the forebody though the hollow strut. The incoming air is conditioned

by means of a tube-bundle flow straightener. If desired, the flow may have swirl added to it by means

of 4 interchangeable sets of swirl vanes. These computer-designed swirl vanes are pictured in

Figure 12. The vanes, which are designed to produce a potential vortex (rv 0= constant) away from

the viscous core, yield flow angles of 15, 30, 45 or 60 degrees at the hub exit. Four interchangeable

nozzles, pictured in Figure 13, are threaded to attach to the forebody. The nozzles are method-

of-characteristics designs for Mach 2.6, 3.1, 3.6 and 4.0 air flow (gamma= 1.4) with no boundary

layer correction. The contours of the nozzles also yield good flow quality for other gases. The

plenum of the injector is instrumented to measure pressure and temperature. The boundary layer

on the outside of the injector has been measured to be .35 cm (.14 in.) thick while the boundary

layer on the inside of the nozzles is of negligible thickness. A spark-schlieren photograph of the

boundary layer is shown in Figure 14.

Figure 9 - Vortex injector, swirl vanes
and nozzles.
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Figure 10 - Drawing of injector installed

in the wind tunnel. Design

features are highlighted.

-_-- _-_-- .__t__" _" _,_

Totel P_'ei_car¢ _ _ 8m I V_'w

Figure 11 - Injector Installed in

tunnel showing coordinate

system used.

. - ..::__:

3

Figure 12 - Navier-Stokes-designed swirl
vanes. From left to right are the

15, 30, 45, and 60 degree vanes.

r/1"////_/////_

V/////////////J_

L////////#////////'/__

I///1"////////////"/t"///_

Figure 13 - Method-of-characteristics designed nozzles.

From top to bottom are Mach 4.0, 3.6, 3.1 and

2.5 designs for air.
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M, = 3.0

Nozzle
Exit 1.75 cm.

0_35 cm

Figure 14 - Spark-schlieren of injector nozzle showing thick

boundary layer on the trailing edge. Flow is from left to

right in the picture.

3.2 EXPERIMENTAL METHODS

Both intrusive probe surveys and non-intrusive optical investigations of the flowfield were

made. Below, each of the techniques used is briefly discussed.

3.2.1 PROBES

3.2.1.1 Five-Hole Probe

A five-hole probe was used to measure total pressure, Mach number, and flow angularity

in several flowfields. The probe used was a miniature, fast-response probe shown in Figure 15. The

design and calibration of this probe is explained in detail by Naughton et a/SS(1991); pertinent

characteristics are listed in Table 1. The advantages of such a probe are that it measures total

pressure, Mach number and flow angularity at each point where data is taken. In addition, the small

tip diameter allows for excellent spatial resolution. The disadvantage of probe surveys is that a

complete flowfield survey requires multiple runs. Also, the probe has a limited range of Mach

number and flow angularity for which the calibration is valid, and it is only valid for air. It also

cannot probe flows, such as vortex breakdown, where its intrusive nature could affect the flowfield.

3.2.1.2 Total Temperature Probe

Figure 16 shows the design of the total temperature probe used, a Beckman Series 300

miniature thermocoupte specially modified for supersonic flow. The junction is a micro-disc with
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0.100 J ½
D.038 _

0.042

Dimensions in inches

Figure 15 - Five-hole probe drawing.
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H.

1 mm

Probe Tip Diameter (0.042 in.)

64 mm
ITip to Transducer Distance

(2.513 in.)

Pressure Transducer Frequency -270 kHz
Response (uninstalled)

5-Hole Probe Frequency Response -50 Hz
(transducers installed)

Pressure Transducer Temperature -54 to 121 C
Compenstion Range

0-350 kPa

Pressure Transducer Range (0-50 psia)

Pressure Transducer Full Scale
300 mV

Output

Mach Number Calibration Range 2.0 - 4.0

Flow Angularity Range (degrees)
Pitch 0 - 25

Roll 0 - 360

Table 1 - Pertinent 5-hole probe characteristics
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Cone shaped taper
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_-S±aintess ou±er body

Dimensions are in inches

Figure 16 - Modified Beckman series 300 total temperature probe.

nominal dimensions of 75-100 microns (.003-.004 in) in diameter and 2.5-7.5 microns (.0001-.0003

in.) thick. The frequency response of this probe is sufficient to take data continuously while the

probe is moving (at approximately 1 cm/sec) through the flowfield; thus, surveys can be completed

quickly. However, this remains a time-intensive process and cannot be used where the intrusive

nature of the probe could affect the flowfield.

3.2.1.3 Probe Drive

Both the probes are positioned in the flowfield by a stepper-motor-driven probe drive. The

probes are mounted to a sting which attaches to a strut that may moved. The stepper motors allow

for movement in increments as small as 6.5 microns (1/4000 in.). The stepper motors control

positioning along two orthogonal axis in the crosstream plane of the wind tunnel. The streamwise

position is determined by adjusting the sting position in the strut.

3.2.2 OPTICAL DIAGNOSTICS

3.2.2.1 Schlieren

The schlieren system used was a conventional Z-type schlieren with two extra folding

mirrors added for space limitation reasons. This type of visualization was used primarily to insure

flow quality and to estimate the boundary layer thickness on the vortex injector. Since the schlieren

method spatially integrates over the test section, it was not used to measure mixing rates due to the

3-D nature of this flow.
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3.2.2.2Planar Laser Scattering Imaging

Planar Laser Scattering (PLS) flow visualization has been used successfully in both low-

speed (KegelmanS6(1986)) and high-speed flows (Clemens and Mungap7(1991)). The setup is

shown in Figure 17. The beam from a 10 Watt pulsed Cu-vapor laser is directed to an optical beam

mounted on a traversing system. In this way the sheet of laser light created by the optics, shown

in detail in Figure 18, may be positioned anywhere in the test section and may be scanned along

the length of the test section during a run by stepper motors. To record the PLS image, a camera

is mounted on a separate traversing system. When the sheet of laser light moves, the camera moves

parallel to it in order to keep the image in focus at all times.

The light-sheet optics consist of two spherical and two cylindrical lenses as shown in Figure

19. The spherical lenses are used to control the location of minimum sheet thickness, while the

cylindrical lenses control the extent of the sheet. Depending on the camera used, either multiple

pulses or a single pulse of the laser could be captured on each frame.

TEST
SECTION Figure 17 - Planar Laser Scattering

(PLS) setup.

lIGHT
SHEET
OPTICS

i

H-t--_

Laser _n_ _[1

$I 52

s I
l

C1 C_

Figure 18 - Detail of PLS optical setup.

T
--h

l
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This technique has the advantage of surveying the entire flowfield in 1 run. For the camera

magnification used, each pixel of the image represented lxl0 -4sq. cm. (1.5 x 10 -s sq. in.), yielding

excellent spatial resolution for this flow. However, processing these images for quantitative

information is a new area and proved to be a formidable task.

The particles utilized for scattering the laser light are created by allowing a trace amount

of water vapor to exist in the high pressure tank. Upon expanding through the nozzle the

temperature drops a sufficient amount for the water vapor to crystallize. It is these ice particles

that are the scattering centers for the laser light. Alvi and SettlesS*(1991) present a detailed

discussion on measurement techniques used to determine particle size in this facility. They

determined a value of 0.4 microns as the upper limit on the particle diameter. However, these

results are only approximate upper limits, and other researchers have suggested that these particles

may be much smaller than the maximum sizes measured.

The size of the scattering particles is important for two reasons. First of all, the particle

Reynolds number, Rep=([up-uf[ *Dp)/v, must be sufficiently small in order for the particles to

faithfully follow the flow. This requires small-diameter particles. However, the particle diameter

must be large enough to scatter the incident laser light, so the particles must not be too small.

Several methods of addressing this issue have been used in the past by different researchers.

Goebel and Duttoni4(1990) varied the particle size between 0.3 micron titanium oxide and 0.5

micron polystyrene-latex (PSL). Since they found little difference in their measurements, they

concluded that their particles were tracking the flow. Samimy and Lele59(1990) tracked particles

in a computationally-determined shear layer. They found that the important parameter was the

Stokes Number, St ='Cp/'Cr They determined that only the smallest particles followed the flowfield.

They suggested that, since velocity-bias error effect on the particle location is cumulative, the

requirements on particle size for planar light scattering were much more restrictive for PLS than

for LDV. Maurice6°(1991) analyzed particles in a vortex flow. He modeled the flow with an

inviscid, potential vortex, and with the results ofa Navier-Stokes computer solution. He found that

only silicon oii particles of 0.t-0.2 microns tracked the flow for both models.

3.3 DATA ACQUISITION SYSTEM

3.3.1 Configuration

The setup for the data acquisition system is shown in Figure 19. The signal conditioned

output of transducers is input to a filtering system. The filters used are 6-pole, 6-zero elliptic low

pass filters with 80 dB per octave pass-band attenuation. The filtered output is then routed to the
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Figure 19 - Data acquisition configuration

LeCroy high speed data acquisition system. This system consists of 3 waveform recorders with 4

channels each. The data may be sampled at discrete frequencies between 20 Hz and 5 MHz and

is stored in a 512 K circular buffer. This entire system is controlled by a 386 microcomputer.

The video system uses either a super-VHS video camera or a Xybion low-light-level camera.

The Xybion camera contains a micro-channel plate intensifier that can detect light intensities as

low as 1 millionth of a footcandle. Each frame may be gated through the intensifier at 20 msec to

25 nanoseconds. With the appropriate gating, a single pulse from the Cu-Vapor Laser iscaptured

on each frame. The output from either camera is routed to a super-VHS video cassette recorder.

In order to coordinate video data with the digitized transducer data, a time code generator records

the run time on the tape. The time signal may be recorded directly on the screen for composite

signals or on the sound track of the tape for super-VHS recordings. The sound track signal may

be read during playback and appears on the time code generator display. This allows for a

coordinated time base between video images and transducer records.

During any given run, the PLS optics may remain at a fixed position or may be traversed

axially along the test section. The PLS optics positioning and traversing is regulated by a motion

controller.

3.3.2 Probe Survey Acquisition Process

For a typical run, the wind tunnel is brought to steady-state conditions before the data

acquisition is triggered. Upon triggering, the data acquisition begins sampling and the motion
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TIME CODE

VCR (super VHS) GENERATOR

'--" HIGH RESOLUTIONMONITOR

386 MICROCOMPUTER
WITH FRAME GRABBER

Figure 20 - Image acquisition hardware.

controller moves the probe through the tunnel in a predetermined manner. At the completion of

a run, data is downloaded from the digitizer buffer to the host computer.

3.3.3 Laser Light Sheet Data Acquisition Process

For runs where video images of the light sheet are taken, the process is slightly differ-

ent. The VCR begins to record and the wind tunnel is brought to steady-state conditions. The

host computer then triggers the LeCroy data acquisition system and simultaneously the motors

begin to traverse the light sheet. When the LeCroy is triggered, it sends a trigger to the time

code generator to begin incrementing. In this way, the data taken by the LeCroy may be

synchronized with the images recorded on the VCR.

3.4 IMAGE DIGITIZATION

3.4.1 Hardware

The configuration of video hardware used to grab images from video tape is shown in

Figure 20. Much of the hardware is the same as that used in image acquisition with the addi-

tion of the frame grabber. The frame grabber is a plug-in board to the microcomputer with 1

megabyte of memory. This allows for the storage of up to four 512 x 512 images. The board

may be accessed via menu-driven software or FORTRAN subroutines.

3.4.2 Image Grabbing Process

Images are digitized in the following manner. The VCR is advanced to the desired

location and is paused. At this point, the time code generator displays a time corresponding to

the displayed image. The exact position on the tape may be changed by frame advancing.

When the proper image is located, an image is grabbed and stored to disk for future process-

ing.
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4. DATA ANALYSIS

4.1 Probe Data Reduction

4.1.1 Total Temperature Data Analysis

The signal measured during a total temperature survey is actually the recovery tempera-

ture of the probe tip. The total temperature is greater than the measured temperature by

some factor determined by Mach number; however, this factor does not vary a great deal.
Determination of this factor versus Mach number is performed by measuring a known total

temperature, say in the wind tunnel freestream; the ratio of the known temperature to the

measured temperature is the correction factor. Repeating this over a wide range of Mach

numbers yields a curve of recovery factor versus Mach number. If Mach number is known

from five-hole probe results in the region in which temperature measurement occurred, then

this correction may be applied at each point measured.

In order to compensate for the variation with respect to time in stagnation temperature

of both the wind tunnel and the injected flow during a given run, a non-dimensional tempera-

ture, theta, is used. This non-dimensional temperature, 0, is given by:

0= (T°'p-T°'t)
(To,i_To, e) (1)

For the total temperature runs, the injected flow was heated to a total temperature above

that of the wind tunnel. Thus, if the probe total temperature, To p, is that of the injected

stream, T._, then 0 will be unity. On the other hand, if the probe total temperature corre-

sponds to the tunnel stagnation temperature, To.,, then 0 will be zero. Thus theta is a measure

of the relative temperature of a given point in the flow with respect to the freestream and

injected flow temperatures.

4.1.2 Five-Hole Probe Data Reduction

The data reduction process is discussed in detail by Naughton et al55(1991). The data

reduction process follows the method of Centolazi61(1957). This entire scheme has been

programmed in FORTRAN for immediate reduction after testing. The results of this data-

reduction process are the total pressure, Mach number and flow direction at measured points
in the flowfield. The errors associated with each of these quantities are listed in Table 2.

4.1.3 Combined Probe Results

The combination of the five-hole and temperature probes results allows the calculation

of any mean flowfield variable. Successful use of these quantities to calculate mass flow and

energy flow per unit area was made by Naughton et a/'4(1989). Integrated across the jet, these

quantities yield mass and energy entrainment.
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Error

Mean

M=2 RMS

Max

Mean

M=3 RMS

Max

Mean

M=4 RMS

Max

Mach

Number

0.07

0.07

0.09

0.05

0.07

0.18

0.08

0.11

0.26

Total

Pressure

4

4

14

6

8

23

Static

Pressure

(%)

5

5

8

6

12

7

13

Roll

(deg)

4.3

5.9

19.4

0.6

1.2

11.1

1.9

3.6

14.7

Pitch

(deg)

0.5

0.7

1.8

0.4

0.5

1.5

0.4

0.5

1.5

M1

0.02

0.02

0.04

0.02

0.03

0.10

0.03

0.04

0.12

My

0.02

0.02

0.04

0.02

0.03

0.10

0.03

0.04

0.12

Mz

0.06

0.07

0.09

0.04

0.06

0.17

0.07

0.10

0.24

Table 2 - 5 hole probe errors

4.2 Laser Light Sheet Image Analysis

4.2.1 Background

The use of light scattering techniques to evaluate concentration levels is not a new

technique. Rosensweig et al +2explored this technique as early as 1960. They focused a light beam

in a low-speed jet and measured the intensity of scattered light from smoke particles seeding the

flow. From these intensities, they calculated mean density profiles, concentration fluctuations,

spectral densities and two-point correlations. Schneiderman and Sutton63(1969) imaged the wake

behind a cone in supersonic flow. By seeding the wake with smoke particles, enough light was

scattered so that with an image intensifier they were able record the image on high speed film. From

the resultant images, they calculated mean concentration profiles, spectral densities, and two-point

correlations. The results from these calculations agreed well with other measurement results, such

as those from hot wire anemometry. Chao et aP4(1990) scanned a laser beam across a low-speed

jet seeded with smoke particles. They recorded the images on a CCD camera and were able to
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calculatethe width, convectivevelocity, and instantaneousconcentration mapsof the jet. Thus,

it seems well established that light scattering from particles can yield sufficient information to

calculate mixing areas from laser sheet images.

4.2.2 Data Reduction Process

A computer program was written to analyze the digitized images of the scattered laser light.

Details of the program are given below. An overview of image processing techniques, such as those

used in the data reduction program, may be found in texts on the subject such as those of Gonzalez

and Wintz63(1987) and Schackoff_(1989). The final program is the result of trial and error process

since several schemes used to extract mixing information from the images were either entirely

unsuccessful or had variations in results from image to image that were unacceptable. The final

scheme requires approximately 4 minutes of computation time per image on a 386 microcomputer.

A roadmap of the image analysis program is shown in figure 21. Each step is discussed briefly below.

Original Smoothing Warping Row Cut Resultant
Image Process Process Analysis Contours

Figure 21 - Roadmap of image analysis process.

4.2.2.1 Smoothing

The first image manipulation is a smoothing

process to eliminate noise in the images. Such

noise can arise from several sources: seeding den-

sity fluctuation, variation in laser power, camera

induced noise, VCR recording noise, and VCR to

frame grabber noise. Repeated smoothing is made

in order to obtain a reasonable image. The reduc-

tion in noise for a given row in an image due to this

process is illustrated in Figure 22. Although the

high frequency noise is eliminated, the large gradi-

ents of interest are unchanged.

N-8

N-8

N-4

w
II

_. N-2

N=O

I

0 128 256 384- 512

Pixel Locotion

Figure 22 - Effect of repeated

smoothing on noise in image
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4.2.2.2Spatial Warping

Figure 18showsthat thecameraview isnot normal to the lasersheet. In order to calculate

adirectionally-unbiasedresult, thisviewing direction mustbeaccountedfor. This isaccomplished

by meansof a spatial warping or mapping usingan imageof a grid taken from the sameangleas
areference. Three points areselectedfrom the imagedgrid and mappedinto three newlocations

suchthat theresultant imagewill containsquareswith anequalnumberof pixelson all sides.With

three initial points, (x,,y,), (x_,Y2),(x3,Y3),and three destination points, (x,',y:), (x_',y2'),(x3',y3'),

selected,equations for the mapping maybewritten:

' ÷a3Yl 2(a)X 1= a I + a2x 1

x_,,a, +a2x2 +a3y2 2(b)

x_=a, +a2x3 +a3Y3 2(c)

By simultaneously solving equations 2(a), 2(b) and 2(c), the unknown coefficients, a,, a2 and

a 3are determined. In a similar manner, the coefficients fory' are determined. Knowledge of these

constants allows all points in the original image to be mapped to their new location.

4.2.2.3 Radial Cut Analysis

The final step in the processing is the radial cut analysis. The images are first cut radially

in 60 separate rays (Figure 23a), and the pixel values along these rays are stored in vectors (Figure

23b). The pixel values in this vector range from a minimum in the unseeded center of the jet, to

a maximum in the seeded exterior flow. Each one of these vectors is normalized between zero, the

pixel value at the center point, and unity, the maximum pixel value found in the freestream. Then

the location of a given intensity level is located and its spatial position determined (Figure 23c).

By connecting all the spatial locations of a given intensity level from each of the 60 rays, a contour

of that intensity value is determined. The area within this contour is then determined simply by

counting the pixels within it.

llllltil I11

10[__1

(b)

0 _r R
[_i_L..L_._L_ll t I I I I I I l I I I

i=l i i=N

(a) (c)
Figure23 -Radial cut process.(a)radialcuts (b)example vectorbeing

normalized (c)locatinggivenintensitylevel.
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29



The results of each step of the image analysis process are shown in Figure 25. The contours

shown in Figure 25(d) are from 0.10 to 0.90 in 0.10 increments.

__ (b)

(a)

(c)
Figure25 - Results of radial cut analysis.

(d)

(a) original image (b) smoothed, warped image (c) radial cuts (d) intensity level contours.

4.2.3 Jet Terminology

Before discussing the results of this image analysis, a clarification of terms is necessary.

Figure 26 shows a cross-section typical of the injected flows in this study. A_ represents the area

within a given intensity contour and r_ is the radius of a circle with the same area. A,_ represents

the difference of the are of two intensity contours, Ao, the area within the outer contour, and A_,

the area within the inner contour (A_ = Ao-A). The equivalent shear layer thickness for the 3-D

flow, delta, is calculated by determining the radii, ro and r_ of two areas, A o, and A_, and calculating

the difference. Finally, when the term "jet" is used in discussing the data, it represents a case

without swirl. When the term vortex is used, it refers to a swirling case (i.e. a set of vanes is used).
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4.2.4 Image Reduction Error Analysis

In order to determine the accuracy

of the results of the image analysis, an in-

depth error analysis was performed. This

analysis was statistical in nature and ac-

counted for all errors and variability dur-

ing a given run; however, this analysis did

not account for bias errors. The results of

the image analysis for fifty different im-

ages at the same test conditions were

averaged for a jet case at L/D = 3 and 9.

In addition fifty images were also reduced

and for the vortex case at L/D = 9. This

allowed for evaluation of statistical errors

for the following quantities: A_, Am_x,

h_k

m_

A +Am_A °

Figure 26 - Jet Terminology

A /A . ,_, and 8 o,_x/8_,. The relative errors calculated for these quantities are summarized
mix,vortex mlx,j

in Table 3. These errors represent the standard deviation of the given quantity over the fifty images.

Notice that errors associated with the 0.9 contours are large; this is due to the fact that the slope

of the intensity curve is flattening as it approaches 1.0 and thus the 0.9 boundary is very sensitive

to any variations in freestream intensity.

Error 0.068

0.2

0.033

03

0.017

0.4

0.010

05

0.009

0.6

0.008

0.7

0.008

0.8 0.9

0.012 0.024

Table 3 - Image analysis error summary. (a) gives errors associated with the area of a discrete contour levels.
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Contour Pairs

A .
mUf

Error

Error

d(8/Sj)/d(L/D_

Error

(absolute)

.1 - .9

.037

.043

.063

.0096

.2 - .8

.026

.038

.052

.0080

.3 - .7

.025

.048

.057

.0087

.4 - .6

.023

.053

.060

.0090

Table 3b - Image analysis error summary, summarizes errors associated with

quantities tnvolvin two contour levels. All errors are relative unless noted.
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5. RESULTS

5.1 Test Matrix

Table 4 lists the different cases that were run. In all, 11 vortex and 7 jet cases were run

covering a convective Mach number range from 0 to almost 2. This large range of convective Mach

number is made possible by using different injection gases. The results represent over 500

individually-reduced images. It is important to note that the convective Mach number listed in the

table is for the no-swirl case. The actual swirl imparted to the flow is a function of both the swirl

vanes and nozzle used since the swirl vanes impart the tangential velocity upstream of the C-D

nozzle. If the tangential momentum is fixed, then the ratio of tangential momentum to axial

momentum (one definition of swirl) depends upon the axial momentum produced by the nozzle.

Tunnel

Mach

Number

3.5....

Injector
Maeh
Number

Gas

2.60 AIR

3.5 3.60 AIR

3.0 3. I0 AIR

4.0 2.84 He-N2

4.0 2.95 He

4.0 3.68 He

4.0 4.49 He

Vane Angle

30 45 60

x x x

X

X

X

X X x

X

X

Table 4 - Test Matrix

Convective Mach
Number

CommenLs

0.15

- 0 Vortex Breakdown

"0

0.7

1.3

1.6

1.9

5.2 Five-Hole Probe Survey Results

A representative result from the five-hole probe is shown in Figure 26. These results are

for M, = 3.0 and M i= 3.1 with the 30 degree swirl vanes. This survey was taken at L/D = 5.35. Since

this cut is through the center of the vortex, the cartesian components of the Mach number, M and

My, are the same as M and M e. The curve fit of the tangential Mach number (the solid line in Figure

26) is an Oseen vortex form:

_./.2

Iv_=(k/r) • (l-e _l ) (3)

The curve fit is only fitted for half the vortex since axisymmetry is assumed. The curve fit fails

at the outer edge of the vortex due to the effect of the shear layer.
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Results for the test matrix of Table 4 are not yet

presented due to several problems. First, the swirl cases in

which air was the injectant gas proved to be extremely

strong vortices. The gradients were so steep in the core of

the vortex, that no reasonable results were attainable.

Secondly, the helium vortex could not be measured be-

cause the 5-hole probe is only calibrated for air. This

leaves unfinished the quantification of swirl, a critical part

of this study. This item is addressed in the conclusions.

5.3 Total Temperature Survey Results

The survey results for a jet case with air, Mr=3.5,

Mi=2.6, L/D =9.0, are shown in the contour plot of theta

in Figure 27(a). Figure 27(b) is for the same conditions

except that 45 degree swirl vanes were installed. The total

temperature of the probe, To._ used in the calculation of

theta was determined from the measured recovery tem-

perature on the probe tip, Tr.¢ This recovery temperature

was multiplied by a constant, To/T.p, calculated in the
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Figure 26 - Example 5-hole probe
results.

Mach 3.5 freestream. This approach is used since the Mach number at all points in the flow is not

known.

The jet results yield the typical "top hat" profile, indicative of a heated injected stream.

However, vortex contours of theta are significantly different. The total temperature in the "wings"

of the vortex are higher than would be expected, and the total temperature in the core drops

dramatically. This phenomenon of total temperature separation was first discovered in a Ranque-

Hilsch vortex tube. Deissler and Perlmutter67(1960) attribute this "energy separation" to shear

work performed by the vortex core on the outer region of the vortex.

5.4 Image Analysis Results

5.4.1 Contour Areas

The areas contained within given contour levels, non-dimensionalized by the nozzle exit

area, are shown in Figure 28(a) for the jet and Figure 28(b) for the vortex. The conditions for this

case were M, = 4.0, Ma = 2.84, 80% Helium 20% Nitrogen injection, which yields a convective Mach
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number of 0.7. For the vortex case 45 ° vanes were inserted. It is reasonable to expect non-

dimensionalized areas contained within all contours should extrapolate to 1.0 at L/D = 0 since the

shear layer should be infinitely thin at the nozzle exit. In this limit, all the intensity contours should

stack up, appearing as a circle with a radius equal to that of the nozzle exit. (In this case all the

contours would contain an area equal to that of the nozzle exit area.) In the Figure, we see the

innermost contour extrapolating to about 1.0 at L/D = 0, but the outermost contour is approaching

about 2.0. One explanation for this observation is that a near-field effect is causing the 0.9 contour

to grow large by L/D =3; however, the inner boundary does not show a similar near-field-growth

effect. A more plausible explanation is that the shear layer has an initial intensity distribution at

the nozzle exit. This intensity distribution, it is proposed, is due to the thick boundary layer that

develops on the ogive-cylinder body. The approximate size of the boundary layer is seen in Figure

14, a spark schlieren of the nozzle. The lack of an initial intensity distribution inside the nozzle exit

radius is due to the fact that there is no seeding in the injector flow. The outer perimeter of the

boundary layer encompasses an area of approximately 2.0 nozzle exit areas. This agrees very well

with the calculated results.

The evolution of the different Ai's with distance downstream appears qualitatively correct.

The inner contours appear to be moving inward with distance downstream and the outer contours
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are growing outward. However, the rate at which the jet contours are diverging is smaller than that

of the vortex.

5.4.2 Mixing Areas

The goal of this study is to evaluate the mixing of a given vortical flow and compare it to a

jet flow. Thus, it is imperative that the measure of mixing is consistent and reasonable or the

comparisons could be misleading. The outward growth of the shear layer is not in itself an accurate

measurement of mixing. Rather, it is the region in which gases from both streams are present that

constitutes the "mixed" fluid. The area A n is thus used as the measure of mixing.

The mixing area for the vortex case above, M =4.0, M,=2.84, 80% Helium 20% Nitrogen

injection, 45 degree vanes, is plotted in Figure 29. Areas between several different contour pairs
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Figure 30 - Mixing area ratio (vortex/jet) as a function of L/D.

are shown. It appears as though any one of them may be representative of the mixing, however,

the 0.3-0.7 and 02-0'8contour pairs were chosen to present the results since the errors associated

with these levels were the smallest.
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5.4.3 Mixing Area Ratios

To directly compare the vortex flow mixing characteristics with that of the jet, the ratio of

vortex mixing area to jet mixing area (A_.v/Amix.j) is calculated. This non-dimensionalization of

the swirling flow by its non-swirling counterpart (the vanes are removed and all other parameters

remain the same) is done to remove the effects of density ratio, velocity ratio, and compressibility

in order to focus on the effect of swirl alone. The results for the same case as above, Mr=4.0,

Mi=2.84, 80% Helium 20% Nitrogen injection, are plotted in Figure 30. It is obvious from either

contour pair, 0.3-0.7, or 0.2-0.8, that the vortex mixing area is growing at a faster rate than the jet;

this accounts for the positive slope of the line. Note that it appears as though the vortex mixing

area has grown about 25% more than the jet mixing area over the first 12 diameters,

5.4.4 Shear Layer Thickness Ratio

Rather than comparing the slopes of A,,,x.v/A._ J versus L/D, the slope of the ratios of the

shear layer thickness deltav/delta j versus L/D are compared. This more traditional method of

examining mixing layers has been used in the past (Papamoschou & Roshkol°(1988)) to compare

compressible shear layers with their incompressible counterpart, having the same density and

velocity ratios. The slope of these curves is an accurate measure of the relative increase or decrease

of mixing so that different cases may be compared.
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In order to plot the non-dimensionalized shear layer thickness, the equivalent axisymmetric

shear layer thickness was calculated for each vortex, delta v and non-dimensionalized by the

corresponding jet shear layer thickness, delta; This quantity was then plotted versus L/D as shown

in Figure 31. As one would expect, Figure 30 and Figure 31 look very similar, as one would expect.

Fitting a straight line to the points in Figure 32, and calculating the slope, d(SJ_)/d(L/D), yields

a single value that represents the mixing layer growth enhancement due to the addition of swirl.

Repeating this process for each vortex case in Table 4 yields the results in Table 5.

GAS

He

M

3.0

VANE

ANGLE

30

M

1.3

60

45

45

45

LEVELS

.1-.9 .2-.8 .3-.7 .4-.6

.0002 .0073 .0116

.0154

.0124

He 3.0 45 1.3 .0033 .0096 .0153

He 3.0 1.3 .0106 .0190 .0257 .0263

He 3.7 1.6 -.0163 .0103 .0188 .0223

He 4.5 1.9 .0087 0.000 .0049 .0039

He-N 2.6 0.7 .0119 .0196 .0183 .0190

Table 5 - Image analysis results. Shaded values are plotted in figure 32.

5.4.5 Spreading Rate Increase Comparison

At this point, it is important to consider the differences among the several cases tested. The

most significant difference is the amount of swirl for a given case. All the cases in Table 2 have
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significantlydifferent swirl. Therefore, if the swirl wereknown quantitatively, then all the cases

couldbeplotted againstswirl andtheeffectivenessof swirl in enhancingmixing wouldbe revealed.

However, theproblem with consideringonly swirl is that there areother parametersbeing

variedaswell. Thevelocityratio, R =u,/u_,densityratio, S=Pl/P_,andthe convectiveMachnumber,

Moare known to be accountedfor in the non-dimensionalizationof each case,but the effect of
densityratio and convectiveMachnumber on the vortex effectivenessin enhancingthe mixing is
not known. Does increasingMcdampentheeffect of thevorticity? Does thevalue of the density

ratio enhanceor dampenthe effectofvorticity? Both convectiveMachnumber and densityratio

varywith the gasesused,sotheseeffectsare not readily separable. However, if all the resultsare

plotted versusswirl, and collapseto a givencurve, then it maybe assumedthat densityratio and
convectiveMachnumberhaveno effecton themixingenhancementdueto swirl. If thisweretrue,

then the convectiveMach number and densityratio only matter for the dimensional growth rate

and are accountedfor with the proper non-dimensionalization.

The swirl for all the casesabove,asstatedbefore,hasyet to be calculated. However, for

the3helium casesthat onlyvariedtheswirlvanes,thevanesthemselvesmaybeusedasaparameter

to representswirl. The mixing layer growthenhancement,d(Sv/_)/d(L/D), isplotted versusvane

anglein Figure 32for theM =4.0,Mi=2.95helium injection cases.The point atthe origin isadded

sincebydefinition, thiscurvemustpassthroughzero.The obvioustrend is that thegreaterthevane

angle,thegreaterthemixingenhancement.Thehighestpoint on thecurve,for the60degreevanes,

represents30% greater mixing areafor the vortex, comparedto thejet, at 12L/D.

The error bars in Figure 32 representan estimateof the error in the slopeof the line in

Figure 31. Theseerror arenot evaluatedfrom theregressionanalysis,but rather arebasedon the

errors associatedwith points usedin the curve fit. Details of this calculation is given in Bowker

and Lieberman6g(1972).

No resultsfor the air injection casesarepresented.This is dueto theproblems of visually

evaluatingthe thicknessof a low velocity ratio shearlayer. Shearlayerswith little orno shearhave

been reported to be dominated by the initial boundary layer (Brown and Roshkog(1974)).The

shearlayermustbe investigatedveryfar downstreamfor thewake-like flow to becomeatrue mixing

layer. In thepresentcase,the initial boundarylayer isknownto be thick, Figure 15,andthe near-

field region isbeing investigated.Both of thesefactorssuggestthat the imagedata for thosecases
with low sheararemostlikely of to beof little value. Unfortunately, this alsoincludesthe onecase
of vortex breakdownexaminedthus far.
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6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

With the data obtained and reduced thus far, the following statements can be made:

swirl enhances compressible mixing, the amount of mixing enhancement increases with in-

creasing swirl, and the maximum increase in mixing area observed was about 30% at 12 L/D.

The mechanism behind this mixing enhancement is still unknown. Also, the effect of convec-

tive Mach number and density ratio on the enhancement effect of swirl is also unknown.

6.2 Future Work

Some additional work is necessary to ensure that this study is complete. First, the swirl must

be quantified such that the exact relationship between swirl and mixing enhancement may be

understood. Secondly, instantaneous light sheet images must be reduced and compared to the

time-averaged images already reduced. This is necessary to insure that the results from the time-

averaged images are truly representative of mixing. In addition, further processing of these images

may reveal information about the turbulence in the shear layer. Third, it must be shown that the

particles being used to scatter the laser light follow the flow. Fourth, the spreading rates

determined by the image analysis must be compared to those measured by other means in order

to verify the technique. Finally, the mechanism behind the mixing enhancement has yet to be

conclusively determined. Detailed approaches to each of these problems are presented below.

6.2.1 Swirl Quantification

6.2.1.2 Experimental Measurements

The reason that the swirl has not been measured to date is that the five-hole probe exceeded

its limits in the highly swirling flowfields. In addition, the probe was only calibrated for air, so

surveys in other gas combinations were not possible. Thus, another technique, LDV, will be

employed to determine the swirl. Below, the steps that will be taken to determine the swirl are

discussed.

First, a weak air vortex will be generated using the free-jet test stand. The resulting vortex

will be measured with both LDV and five-hole probe to verify the LDV results. Once the proper

operation of the system is verified, the Mach 2.9 helium vortex velocity profile will be measured

with 3 sets of swirl vanes. Also, the M=2.84 He-N 2 vortex generated with the 45 ° vanes will be

measured. These cases will also be investigated using the free-jet facility. Due to pressure

limitations, the higher Mach number cases using helium will not be tested in the free jet. With these

results, over a wide range of swirl and exit Mach number, empirical relationships for swirl will be
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sought. With theserelationships, the quantification of the vortex strength for each case will be

possible. The methods of quantifying the vortices is discussed below.

6.2.1.2 Vortex Quantification Methods

Settles and Cattafesta 69have considered methods of quantifying supersonic vortical flows.

Several of these methods will be used to quantify the vortices strengths from the flowfield surveys.

The result that appears to best reflect the physics of compressible swirling flow will be utilized to

characterize the swirl for the cases listed in Table 4.

6.2.2 Instantaneous Image Reduction

The instantaneous PLS images of several of the cases in Table 4 will be reduced. An

algorithm addressing particular problems associated with the reduction of these instantaneous

images is in the process of being developed. The information contained in the instantaneous

images can be analyzed in many ways. Several images can be averaged, and then reduced in a

similar manner to the time-averaged images. However, from the instantaneous images, we know

that large departures from the mean structure occur (Figure 4). Therefore, the question arises,

whether the time averages represent the average mixing area, or are they simply a limit of the

distance the structures stretch? This can be easily tested by reducing many instantaneous images

separately and averaging the results.

In addition, turbulent-like quantities can be determined from these images. For instance,

the average and fluctuating length of a given intensity-level contour may be calculated. Also, the

average and fluctuating intensity of a given region may be calculated.

6.2.3 Particle Dynamics

It is important to insure that the particles are following the flow closely if the laser light sheet

images are to be representative of mixing. The particle sizes have already been estimated; however,

it remains to be seen whether these particles follow the flow.

The problem of flow tracking will be approached in two ways. One approach is to model

the flowfield and predict the tracks of the particles. This is done by using the experimentally-

measured velocity field, or some representation thereof, and assuming an equation of motion for

the particle of a given mass and size. This equation is then solved by numerically integrating the

equation of motion. Performing this integration for numerous time steps yields the particle

position as a function of time. This position may be compared with a fluid particle path starting
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from the samelocation.

The secondapproachis to use information in the literature concerningparticle tracking.

Any particle tracking modelsor experimentsin vortical flow will be analyzed.

6.2.4 Verification Of Image Analysis Results

To verify whether or not the results from the image analysis are reasonable, comparison will

be made with other results. A wide range of data exists within the literature against which the

spreading rate of the pure jet cases may be compared. Although the resulting shear layer

thicknesses may differ significantly depending on the method used to evaluate the shear layer

thickness (Papamoschou and Roshko_°(1988)), the results should show the same tendencies.

6.2.5 Vortex Mixing Enhancement Mechanisms

From the results to date it appears as though the mixing enhancement may involve the

modification of large scale structure. It has been noted by many researchers that these structures

control turbulent mixing. In addition, many analytical studies have pointed out that azimuthal

instability mechanisms are enhanced in swirling flows. Finally, from instantaneous images of the

shear layer, the large scale structure of the vortical flow appears to be different from that of the

jet flow.

Aside from the instantaneous images already taken, optical deflectometry experiments are

being planned to study the turbulent structure of the shear layer. Figure 33 shows the schlieren-

based optical deflectometer developed by Mclntyre and Settles 25. This instrument is sensitive to

density fluctuations in the flow. Thus it yields a time record of the density gradient. Single-point

measurements yield spectral information about the turbulence. Two-point measurements can be

taken either on the same or opposite sides of the shear layer. Varying the distance between the

two points on the same side of the shear layer yields information on the convective velocity and

evolution of structures. Looking at the signal from opposite sides of the shear layer can yield

information about the phase of the structures from which the helicity of the structures may be

derived.
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